
AFIT/GCS/ENG/93D- 13

AD-A274 179

RADAR CROSS SECTION VISUALIZATION
USING SAMPLE BUFFER

PROGRESSIVE REFINEMENT
VOLUME RENDERING

THESIS

Alain L. M. Jones, Captain, USAF

AFIT/GCS/ENG/93D- 13

t[j;:..;::.conuu.:i3 ooi.Or

p. Late..-,: All; DTIC reproduet-

ions %ill be Ia black and

Approved for public release; distribution unlimited

93 ' 2 22 137 93-31024

Disclaimer

The views expressed in this thesis are those of the author and do not reflect the official

policy of the Department of Defense or the United States Government.

L -

+ S

DISC'LAIMER NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

-- J form Approved

REPORT DOCUMENTATION PAGE I ,B No 0ppr 40e 8

+W-.1 11.- 1--t I". .1 n n ie CPI Irt ,~~,.~e.e!, lr t", h -d-~n.t~ee -V th-nf -I tC .e ýp.en ,

0'5.s eH' 1 t'-. . S.n ' 4eIen,!f 1A MO)) 401411 0 fue I- Offi ot It, 1 -11-" Heedje! t' p'h IR~dnelt.oee Fpej t (0704-.llI). Weshn-eee. ,C 20'03

I. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1993 Master's Thesis

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

RADAR CROSS SECTION VISUALIZATION USING SAMPLE BUFFER

PROGRESSIVE REFINEMENT VOLUME RENDERING

6. AUTHOR(S)

Alain L. M. Jones, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 RFOT/NUMBER
AFIT/GCS/ENG/93D- 13

9. SPONSORING! MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC/YVM

Hanscom AFB, MA 01731

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Max#mum 200 words)

This study developed a prototype for an interactive radar cross section visualization software system. Tie system,
hosted on a Silicon Graphics workstation, is intended to support aircrews, mission planners, aircraft designers,
and others who require an understanding of aircraft radar cross section characteristics. The input to the system

is a set of radar cross section samples taken at various aspect angles. A pre-processor developed as part of this
study transforms the input radar cross section data into a three-dimensional cuberille data volume. This data
volume is then visualized using an interactive volume renderer. The interactive volume renderer implements
progressive image refinement using the Ke & Chang Sample Buffer algorithm. A graphic user interface allows
users to modify rendering parameters and see the results of their changes in near-real-time.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Volume Rendering, Scientific Visualization, Radar Cross Sections, 66

Stealth Technology, Computer Graphics 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20, LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED I UN('CLASSIFIED) II

A'hN 7540.0" /O*0.O0 Sta2'as0 5500 298:i, ? 1 q

AFIT/GCS/93D-13

RADAR CROSS SECTION VISUALIZATION USING SAMPLE BUFFER

PROGRESSIVE REFINEMENT VOLUME RENDERING

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Alain L. M. Jones, B.S.C.S

Captain, USAF

December 1993

Approved for public release; distribution unlimited

Preface

This thesis explores how to interactively examine the radar cross section

characteristics of an object. As such, this research encompasses two rapidly burgeoning

fields - scientific visualization and low-observables technology. I consider myself

fortunate to have been able to spend a year working in these two dynamic fields.

I would like to thank my thesis advisor, Lt Col Martin Stytz, for providing the

right level of guidance - enough to keep me on track, but with enough latitude to make

the research truly mine. My thanks also goes to the members of my thesis committee,

Lt Col Philip Amburn and Dr. Andrew Terzuoli, for their support during this thesis cycle.

ii

Table of Contents

Page

Table of Contents .. iii

List of Figures ... vii

List of Tables ... ix

Abstract ... x

I. Introduction .. 1

Background ... 1

Problem ... 2

Research Objective ... 3

Scope and Lim itations ... 3

Approach .. 3

Thesis Overview .. 4

II. Current Knowledge .. 5

Volume Rendering Background .. 5

Volume Rendering Speedup Techniques ... 7

3-D Enhancement .. 7

M anipulation ... 7

Classification .. 8

M apping .. 8

Viewing ... 8

Shading ... 9

Ke & Chang Sam ple Buffer Algorithm ... 9

Octree Data Structure ... 10

111i,

Sam ple Buffer Data Structure ... 11

Sam ple Buffer Algorithm .. 12

Run-Length Encoding Enhancem ent .. 13

IH. System Design and Im plem entation .. 15

Overview ... 15

Interactive Volum e Renderer ... 15

Octree Generator .. 15

Rendering Engine .. 18

Data Structures ... 18

Initialization ... 18

Rendering .. 18

Sam ple Record Subdivion .. 19

Run-Length Encoding .. 20

Color Transfer Function .. 20

User Interface ... 20

M ain Interface W indow .. 21

Legend W indow .. 22

Color Specification W indow ... 24

VOXELIZE ... 25

Input File .. 25

General Approach ... 26

Filtering ... 26

Spherical M asking .. 26

Proportional M asking ... 27

Contour Coloring .. 27

Data Volum e Size ... 27

iv

IV . Results ... 28

Introduction .. 28

Progressive Refinem ent Algorithm Behavior .. 28

Effective Visualization Techniques ... 29

Performance of the Interactive Volume Renderer ... 30

V. Conclusions ... 39

Assessm ent of Results ... 39

Future W ork .. 39

Sam ple Buffer Algorithm Optim ization ... 39

M ulti-Polar Visualizations ... 40

Im proved RCS Voxelization Pre-Processor 40

Distributed Im plem entation .. 40

Virtual Environm ent ... 40

General Purpose Rendering .. 40

Appendix 1

IVR User's M anual ... 41

Introduction .. 41

Input File Form at .. 41

Com mnand Line Options ... 42

Control W indow ... 43

Viewing Geom etry Area .. 43

Acceptable Error Area .. 44

Physical Screen Area .. 44

Com m and Area .. 44

Color Specification W indow ... 45

Apply Button ... 45

V

Data Value Range ... 46

Opacity ... 46

HSV Value .. 46

Com m and Buttons ... 46

Appendix 2

VOXELIZE User's M anual ... 47

Introduction ... 47

Com m and Line Options ... 47

Bibliography .. 49

Vita .. 52

vi

I

List of Figures

Page

Figure 1. Volume Rendering Pipeline [Kauf93 .. 6

Figure 2. Ray Casting into Discrete Voxel Space ... 7

Figure 3. Relationship between Octree and Voxel Space .. 11

Figure 4. Sample Record Definition [Ke93] .. 12

Figure 5. Sample Buffer List Associated with a Ray [Ke93] 12

Figure 6. Octree Node Record .. 16

Figure 7. Octree Child Numbering Convention ... 17

Figure 8. Sample Buffer Traversal and Sub-Division Pseudo-Code 19

Figure 9. Sample Record Sub-Division Pseudo-Code ... 19

Figure 10. IVR Main User Interface Window ... 21

Figure 11. Legend W indow ... 23

Figure 12. Color Specification Window ... 24

Figure 13. Vertical/Vertical RCS, Default Voxelization, Head-On View,

Phase I of 6 ... 32

Figure 14. Vertical/Vertical RCS, Default Voxelization, Head-On View,

Phase 2 of 6 32

Figure 15. Vertical/Vertical RCS, Default Voxelization, Head-On View,

Phase 3 of 6 33

Figure 16. Vertical/Vertical RCS, Default Voxelization, Head-On View,

Phase 4 of 6 33

Figure 17. Vertical/Vertical RCS, Default Voxelization, Head-On View,

Phase 5 of 6 34

vii

Figure 18. Vertical/Vertical RCS, Default Voxelization, Head-On View,

Phase 6 of 6 .. . 14

Figure 19. Vertical/Vertical RCS, Contour-Colored, Head-On View 15

Figure 20. Vertical/Vertical RCS, Proportional, Head-On View 35

Figure 21. Vertical/Vertical RCS, Proportional, Side View 36

Figure 22. Vertical/Vertical RCS, Proportional, God's-Eye View 36

Figure 23. Horizontal/Horizontal RCS, Proportional, Head-On View 37

Figure 24. Horizontal/Horizontal RCS, Proportional, Side View 37

Figure 25. Horizontal/Vertical RCS, Proportional, Head-On View 38

Figure 26. Horizontal/Vertical RCS, Proportional, Side View

viii

List of Tables

Page

Table 1. Progressive Refinement Performance Metrics .. 31

"Table 2. VOXELIZE Command Line Options .. 47

ix

AFIT/GCS/ENG/93D-13

Abstract

This study developed a prototype for an interactive radar cross section

visualization software system. The system, hosted on a Silicon Graphics workstation, is

intended to support aircrews, mission planners, aircraft designers, and others who require

an understanding of aircraft radar cross section characteristics.

The input to the system is a set of radar cross section samples taken at various

aspect angles. A pre-processor developed as part of this study transforms the input radar

cross section data into a three-dimensional cuberille data volume. This data volume is

then visualized using an interactive volume renderer.

The interactive volume renderer implements progressive image refinement using

the Ke & Chang Sample Buffer algorithm. A graphic user interface allows users to

modify rendering parameters and see the results of their changes in near-real-time.

x

RADAR CROSS SECTION VISUALIZATION
USING SAMPLE BUFFER

PROGRESSIVE REFINEMENT VOLUME RENDERING

I. Introduction

Background

'First sight, first kill' has been a fighter pilot's maxim since the first days of aerial

combat. Low Observable (LO) technology is playing an ever-larger role in insuring that

our pilots are the ones who get that 'first sight.' LO technology must be a consideration

in all future air weapons systems [Foul92]. Reducing an aircraft's radar cross section is

one aspect of LO technology.

Radar cross section is a term used to characterize how much of the radar energy

incident on a target is reflected back towards the emitter. Formally, the radar cross

section (a) of a target is defined by the following equation:

lim 4• ,.E
--= R -'4 co IE,12

where R is the distance from the scatterer, Es is the scattered field strength and Ei is the

incident field strength [Knot87]. The radar cross section of a target varies greatly from

one aspect angle to another. Because of these large variations, it is often convenient to

express radar cross section in logarithmic units. Radar cross section is usually expressed

in terms of dBsm, which means "decibels over square meter" and is defined as

dBsm = 10 logl 0(c) [Knot85]

Radar cross section is also a function of, among other things, the radar frequency,

as well as the incident and received polarizations [Knot85]. For each combination of

horizontal or vertical incident polarization and horizontal or vertical receiver polarization,

we have a different radar cross section [Knot85].

Problem

Aircrews, mission planners, and air vehicle designers require a clear

understanding of the radar cross section characteristics of their aircraft. This study

investigates the use of computer graphics to generate visualizations of this radar cross

section data.

In particular, this study will apply the scientific visualization technique of volume

rendering [Kauf9 1]. The visualization of radar cross section data using volume rendering

was previously investigated by Tisdale [Tisd92]. Tisdale concluded that volume

rendering could generate useful visualizations of radar cross section data, but that the

time to generate these visualizations was long relative to other available techniques. This

thesis will follow-on to Tisdale's work by investigating speed-up techniques for volume

rendering and applying those fast volume rendering techniques to the problem of

visualizing the radar cross section of an object.

2

Research Objective

The research objective is to dcvelop a prototype interactive volume rendering

system which generates visualizations of radar cross section data. The volume renderer

will implement the Sample Buffer progressive refinement volume rendering algorithm

described by Ke & Chang [Ke93].

Scope and Limitations

This thesis effort will limit itself to the design, implementation, testing and

analysis of the objective volume rendering system. Only volume rendering approaches to

radar cross section visualization will be considered.

The application of surface rendering and particle systems to this problem has been

investigated by Tisdale & Wojszynski [Tisd92], [Wojs92]. Those approaches will not be

addressed in this thesis.

Approach

This research began with a review of the current literature in the field of volume

visualization, with particular emphasis on volume rendering fundamentals and speed-up

techniques. Radar fundamentals references were also reviewed to gain some familiarity

with the domain of the visualization.

After completion of the literature review, design and implementation of the

prototype Interactive Volume Renderer began. The VOXELLZE pre-processor for

3

converting RCS data to volumetric data was also developed. This effort took place in the

AFIT Graphics Laboratory, using Silicon Graphics workstations.

Once the software tools were developed, they were evaluated using a

representative RCS data set. This is the same RCS data set used by Tisdale and

Wojszynski in their radar cross section visualization efforts [Tisd92], [Wojs92J.

Thesis Overview

The remainder of this thesis is organized as follows. Chapter 2 is a brief literature

review in the area of volume rendering. Chapter 3 describes the design and

implementation of the Interactive Volume Renderer software system. Chapter 4 presents

the results of this research. Finally, chapter 5 presents this study's conclusions and

suggests areas for follow-on research.

4

II. Current Knowledge

The first step in developing the RCS visualization system was a review of the technical

literature. This chapter presents the results of that literature review. The first section

provides background on volume rendering fundamentals. The second section discusses

the volume rendering speed-up techniques considered. The final section provides a more

detailed description of the particular speed-up technique which was used in our

visualization system, the Ke & Chang Sample Buffer algorithm [Ke93]

Volume Rendering Background

Volume visualization is a collection of computer graphics techniques for

visualizing three-dimensional functions [Laur9 11, where the term function is used in a

general sense to indicate a set of values over three-space. Kaufman sub-divides the field

of volume visualization into volume rendering and surface rendering [Kaut'9 1I. In

volume rendering, the 3-D function to be visualized is represented by a discrete voxel

space - a 3-D grid of unit volume cells called voxels. This is distinguished from surface

rendering, which extracts isosurfaces from the 3-D function and represents them as

geometric primitives (e.g. polygons).

Kaufman generalizes the processing steps of any volume visualization system into

a volume visualization pipeline [Kauf91]. A volume rendering system can enhance,

manipulate, and classify its input voxel space. It then maps the voxels to display

primitives, projects them into 2-D space, and shades them, yielding the completed 2-D

5

I!_ _ _ _ __ _ _ _ _

image. This generalized pipeline is represented in Figure 1. The following section

explains the steps of this pipeline, as well as speed-up techniques for each step.

3D Voxel Image

3-D Enhancement

SEnhanced 3-D Image

Manipulation 1

, Transformed 3-D Image

Classification 1

4 Classified Data

Mappin~g7
SDisplay Primitives

Viewing 1

4 2-D Projection

Shading

2D Shaded Projection

Figure 1. Volume Rendering Pipeline [Kauf93]

A popular volume rendering architecture, exemplified by the VIPER system used

in previous thesis efforts [Tisd92, Brid88], implements this pipeline as follows. Each

voxel is assigned a color and opacity, and a 2-D projection of the resulting colored semi-

transparent cube is computed (Levo90. A simple, brute-force volume rendering

algorithm simply casts rays into the volume to compute the 2-D image, as illustrated in

Figure 2. At even intervals along the ray, the color and opacity of the volume is sampled

by tri-linearly interpolating the colors and opacities of the eight nearest voxels. These

samples are composited with each other to yield the color of the ray.

6

ye Ray

Point
Discrete Voxel Space

2!D
Pixel Plane

Figure 2. Ray Casting into Discrete Voxel Space

Volume Rendering Speedup Techniques

A number of volume rendering techniques have been developed in an effort to

achieve faster visualizations. These various speed-up techniques can be organized by the

portion of the volume visualization pipeline they address.

3-D Enhancement. This step deals with improving the understandability of the

voxelized data by, for example, applying image processing techniques to improve

contrast [Kauf9 1]. Image enhancement was not an objective of this thesis - speed-up

techniques in this area were not researched.

Manipulation. This stage deals with geometric or domain transformation on the

voxel data, as well as voxblt operations [Kauf9l]. In this step, speed-up could be

accomplished by clipping the voxel space down to a volume of interest [Styt9l], thereby

reducing the amount of data to be processed. This can be accomplished by applying a

matting transform to remove a portion of the data [Dreb88J.

7

Classification. For volume rendering, this step may assign optical properties to

individual voxels (e.g. color, opacity) [Kauf91]. This can be done by applying a color

transferfunction to the data value of a voxel. As this transfer function can be expensive,

speed-up in this area can be accomplished by minimizing the number of times it is called

[Ke93].

Mapping. In this stage, 3-D voxel data is mapped into display primitives

[Kauf91]. This stage can be sped-up by using an octree representation of the voxel space

[Same91]. An octree represents the 3-D volume at varying levels of resolution, with the

root of the octree representing the volume at minimum resolution, and the leaves

representing the volume at maximum resolution. By selecting the octree level from

which primitives will be mapped, a trade-off can be made between number of primitives

and resolution. Speed-up is accomplished by reducing resolution and hence the number

of primitives.

Hierarchical splanting uses an octree to represent the voxel space at varying levels

of resolution, then maps the octree nodes to 2-D splats of varying sizes [Laur9 1]. A splat

draws each voxel as a cloud of points, spread across multiple pixels [Yage931.

Progressive image refinement is implemented by progressively increasing the resolution

of the octree. Williams has developed a splat-based approach to render an image from

non-rectilinear grids [WiUl92] Under this approach, splats can be generated without first

interpolating the data onto a rectilinear grid.

Adaptive Isotriangular Subdivision reduces the computational expense of

traditional ray casting by sampling on a grid of isosceles triangles instead of quadrants

[Shu911. The geometry of the isosceles triangle grid allows sampling of the volume with

fewer rays than a rectangular grid, without sacrificing image resolution.

Viewing. In this stage, the display primitives are projected to form a 2-D screen

image [Kauf9l].

8

Avila and Sobierajski's Polygon Assisted Ray-Casting (PARC) algorithm uses a

Z-buffered polygon-oriented graphics engine to speed up volume rendering. It does this

by forming a polygonal approximation of the front and back edges of the object being

rendered. Cast rays need only traverse those parts of the volume between the front and

back edges of the approximation. Best results are achieved with sparse volumes

[Avil92].

Volume rendering lends itself to a parallel implementation. Elvins reports

implementing a distributed splatting system on both a specialized multi-processor

architecture [Elvi91] and a network of general-purpose workstations [Elvi92]. Each

processor computes the image contribution of a slice of voxels. However, message

passing becomes a bottleneck for large images.

Fuchs et al. propose opacity thresholds on ray casting, wherein a sampling along a

cast ray would cease after the ray has reached some user-specified opacity level [Fuch9O].

Beyond that point, the contributions of the remaining untraversed voxels could be

assumed negligible.

Shading. The final step of the pipeline is to apply shading. The ultimate goal of

this step is to obtain a photorealistic 2-D image [Kauf91]. However, speed-up can be

obtained by trading-off realism for speed. Hibbard et al. propose that rapid rendering and

interactivity add more to understanding than esthetics and photorealism [Ilibb90].

Ke & Chang Sample Buffer Algorithm

The Ke & Chang Sample Buffer algorithm provides a progressive refinement

approach to ray-casting volume rendering[Ke93]. In essence, the algorithm functions as

follows. The volume data is mapped into an octree. The octree is then traversed

according to a user-specified resolution criterion. Increasingly refined images are

9

generated by increasing the resolution criterion. Ray casting is used to sample the octree.

A sample buffer data structure is used to speed up ray casting by saving the results of

previous rendering passes.

Two data structures are central to this algorithm: the octree and the sample

buffer. This section will describe these two data structures, how the algorithm functions

uses these data structures, and describe a run-length encoding enhancement.

Octree Data Structure. The input voxel space is encoded into an octree. The

octree is a tree structure with a branching factor of eight [Styt9l]. The root node

represents the entire voxel space. The children of the root each represent one octant of

the voxel space. Each subsequent level of the tree represents a further eight-way

subdivision of the voxel space. The leaf nodes of the octree represent individual voxels.

Figure 3 depicts an octree with a depth of two, and its correspondence to voxel space.

10

nu__ln•n • JU n lm

Root

Sub-
Octants

Cuberille
Space

Figure 3. Relationship between Octree and Voxel Space

For each node of the octree, three important attributes of the voxel space it

encloses are also included: the color and opacity of the space, and the error of the space.

The color and opacity of the space is the average of the voxels within iL The error of the

space reflects the amount of variation within the space. The implementor may select any

reasonable error measure - Ke & Chang use the difference between the highest and

lowest data value within the space.

Sample Buffer Data Structre. For each pixel, there is a corresponding sample

buffer. The octree consists of a list of sample records. The data contained in the sample

record is shown in figure 4.

11

struct
TYPE // TYPE approximate if the sample's color is approx

// TYPE == exact if the sample's color is true
union

OCTANT // used if TYPE == approximate
RGBA // used if TYPE == exact

Figure 4. Sample Record Definition [Ke93]

For each data sample taken along a ray, a sample record is added to the

corresponding pixel's sample buffer, as shown in figure 5.

Ray 9k -- I 1, ,M

Figure 5. Sample Buffer List Associated with a Ray [Ke93]

Sample Buffer Algorithm. The progressive refinement algorithm has N phases.

For each phase, the acceptable error criterion is progressively reduced. During each

phase, a ray is cast through each pixel.

During the first phase, for each sample along the ray, the octree is searched from

the root down until a node that meets the acceptable error criterion is found. There are

two possible outcomes - either a node which meets the acceptable error criterion is

found, or not.

In the former case, an octree node which meets the acceptable error criterion is

found. A sample record of type 'approximate' is then inserted into the sample buffer.

This type 'approximate' sample record points to the octree node found.

12

In the alternate case, a leaf node of the octree is reached and the acceptable error

criterion is still not met. In this case, the sample color is determined by interpolating the

data value and applying the color transfer function to the interpolated value. A sample

record of type 'exact' is inserted in the sample buffer. A type 'exact' sample record,

rather than pointing to an octree node, instead contains the actual sample color just

computed.

During subsequent phases, for each sample along the ray, there is already at least

one sample record in the sample buffer. There is no need to begin searching the octree

from the root node. Instead, if the corresponding sample record is of type 'approximate',

the octree is searched starting from the octant pointed to by the sample record. If the

sample record is of type 'exact', there is no need to search the octree at all, as the

previously computed color value stored in the sample record may be used.

The color of each pixel is determined by simply front-to-back compositing the

color values represented in its sample records. The equations used for compositing are:

Coat(i) = Cout(i -1) + C(i) * a(i) * (1-z.jin(i))

czout(i) = aOto(i - 1) + a(i) * (1- cjin(i))

Fori= I .. N

where

Coat(O) = 0

aout(O) = 0

The final color and opacity of the ray are given by C(N) and cx(N).

Run-Length Encoding Enhancement. Memory usage of the algorithm can be

reduced by applying run-length encoding to the sample buffers. There are two cases

when run-length encoding can be applied: consecutive 'exact' records, and samples in

the same leaf or octant. These two cases are explored below.

13

When two or more consecutive sample records in a sample record are of type

'exact', they can be replaced by a single sample record. The color and opacity values of

this combined record is obtained by front-to-back compositing the colors and opacities of

the consecutive 'exact' records. The resulting sample record has the same optical

characteristics as the series of sample records it replaces.

When two or more samples are in the same leaf or in the same octant, their color

attributes can be composited and stored as a single sample record. Applying this

compression option would reduce storage requirements. However, using this

compression scheme could either speed up or slow down subsequent processing. Speed-

up would occur if all of the composited nodes meet the error criterion for the next

refinement phase, since the pre-computed composite color value would be re-used. Slow-

down would occur if any of the composited nodes do not meet the error criterion of the

next refinement phase. In that case, the composited value computed would only be used

once, and the computational overhead of the compression scheme would not be offset by

any execution time savings.

14

III. System Design and Implementation

Overview

The software prototype developed for this research consists of two parts. An

Interactive Volume Renderer implements the Ke & Chang Sample Buffer progressive

refimement volume rendering algorithm [Ke931. A Voxelizer converts the radar cross

section simulator output file into a cuberille data set readable by the Interactive Volume

Renderer. This chapter will describe the design and implementation of each part of the

software prototype.

Interactive Volume Renderer

The Interactive Volume Renderer (IVR) is implemented in ANSI C. It runs on

the Silicon Graphics platform. IVR has four major components. The octree generator

builds an octree from the input voxel file. The rendering engine renders the octree using

the Sample Buffer algorithm. The color transfer function maps voxel data values to

optical characteristics (i.e. color and opacity). The user interface allows interactive

modification of the rendering parameters. Each will be discussed in turn.

Octree Generator. The octree generator reads in a cuberille data file and

converts it to an octree that can be used by the Sample Buffer algorithm.

Each voxel in the input cuberille data is taken to be a unit cube. For simplicity of

the prototype, the decision was made to limit the input to cuberille data, rather than a

more general rectangular or irregular grid. A method for volume rendering rectangular

15

grids is described and implemented by Bridges [Brid88]. Methods for rendering irregular

grids are described by Foley [Fole9O].

The data structure used for each node of the octree is shown using C-like pseudo-

code in Figure 6.

struct octreerecord
(

color-type color; I/ The average RGBA of the volume
float error; // Variation in data values w/in the volume
int span; // Length of a side of the volume
vector mincorner; // Lowest x, y, z coords in volume
boolean is_leaf; // Flag indicates a leaf node
union
(

// Pointers to the sub-octants
// Used when the node is not a leaf
struct octreerecord *node-ptr [8];

/1 Pointers to eight voxels which make up the volume
// Used when the node is a leaf
int voxel_offset [8];
children;

);

Figure 6. Octree Node Record

The octree generator operates recursively. It creates a root node which

encompasses the entire cuberille data space. It then invokes itself for each of its sub-

octants. When the sub-octants of a node consist cf only one voxel, the color of each

voxel is computed, and the color of the node is set to their average.

The color of the parent node is the average of its contained voxels. The opacity of

a node is the average opacity of its contained voxels, corrected for thickness by

multiplying it by the cube root of the number of contained voxels. This opacity

correction is used so that our Sample Buffer implementation need not concern itself with

the thickness represented by any given node.

16

The error parameter stored in each octree node is a measure of the data value

variations within the sub-volume it represents. In this prototype, the error parameter is

computed by simply subtracting the minimum data value found in the sub-volume from

the maximum data value in the sub-volume.

Some redundant information is stored in the octree in order to improve the speed

of the Sample Buffer algorithm. The minimum x, y, and z coordinates of the contained

volume is stored in each node, even though that information can be derived from the

position of the node relative to the root. However, since the Sample Buffer data structure

points directly to octree nodes, it cannot readily determine the relative position of the

node without searching the octree. For the same reason, the width of the contained

volume is also stored in the node record.

The octree is stored using a conventional dynamic memory implementation,

where each node contains pointers to each of its eight children. This method was chosen

for its simplicity of implementation. Alternative implementations include using a linear

octree structure [Garg86] or a hash table [Glas84].

The child nodes of the octree are numbered 0 through 7. In order to simplify

traversal calculations, the child numbers are assigned according to their position relative

to the center of the parent octant. The numbering scheme is explained in figure 7.

Sub-Octant Number

True if (X > Center) True if (Y > Center) True if (Z > Center)
False otherwise False otherwise False otherwise

Figure 7. Octree Child Numbering Convention

17

Rendering Engine. This is the heart of the Interactive Volume Renderer. The

rendering engine implements the Ke & Chang sample buffer algorithm [Ke93].

Progressive refinement is implemented by multiple rendering passes. Each pass

displays octree nodes that have an error parameter less than or equal to that pass'

acceptable error. The acceptable error ranges from a user-specified initial value for the

first pass, down to zero for the last pass. At the end of each pass, the acceptable error is

divided by a user-specified divisor.

Data Structures. The sample record data structure implemented in the

rendering engine differs slightly from the one described by Ke & Chang [Ke931. In

addition to the data fields specified by Ke & Chang, this implementation adds an entry

point field. This field specifies the exact coordinates of the point at which the ray enters

the octree node. By adding this field to the data structure, the entry point of the ray into

the sampled sub-volume need not be re-computed each phase.

Initialization. The sample buffer for each pixel is initialized to one of

two values. If a ray cast from the eye point through the pixel intersects the data volume,

then the sample buffer is initialized to point to the root node of 4he octree, and the point

of entry into the volume is saved in the sample buffer. If the ray does not intersect the

data volume, the sample buffer is initialized to a null value. In this way, the ray-volume

intersection calculation need only be done once for each pixel.

Rendering. Rendering is accomplished by traversing and sub-dividing

the sample buffer for each pixel. The pseudo-code for this traversal is shown in figure 8.

If a sample record points to an octree node that does not meet the acceptable error

criterion, the algorithm computes the path of the ray through the node, and replaces the

original sample record with one or more sample records representing the path of the ray

through the higher-resolution portions of the octree.

18

IF sample-buffer is null THEN
render pixel in background color

ELSE
initialize pixel color to zero;
REPEAT

WHILE error(sample record) > acceptable error;
subdivide (sample record);

composite current sample record onto pixel color;
move to next sample record;

UNTIL at end of sample buffer;

Figure 8. Sample Buffer Traversal and Sub-Division Pseudo-Code

Sample Record Subdivion. The sub-division of a sample record is

central to this implementation of the Sample Buffer algorithm. To subdivide a sample

record, the algorithm at Figure 9 is used. The sub-division algorithm depends on the fact

that the sample record includes the exact location of the entry point into the octree node's

sub-volume. Without this information, the algorithm would have to perform an

expensive ray-volume intersection computation for each sub-division operation.

original node := octree node pointed to by sample record;
delete (sample record);
IF originalnode is a leaf node THEN

tri-linearly interpolate the color of the voxel;
insert exact-type sample record;

ELSE
set ray to the entry point of the original_node;
REPEAT

compute which sub-octant the ray is in;
insert new sample record which points to sub-octant;
advance ray to the exit point from sub-octant;

UNTIL ray exits original_node;

Figure 9. Sample Record Sub-Division Pseudo-Code

The initial entry point into the volume and the exit point from each sampled sub-

volume are analytically computed. Implementing the volume traversal using the 3D-

Digital Difference Analyzer [Fuji86] was initially considered. The 3D-DDA algorithm

19

I

was appealing because it can rapidly compute the traversal path through a volume grid.

However, the 3D-DDA was not used in this implementation because it did not readily

provide the precise voxel entry points required for interpolation.

Run-Length Encoding. The run-length encoding enhancement described

by Ke & Chang was partially implemented [Ke93I. Successive type 'exact' sample

records are composited together. However, compositing sample records from the same

octant was omitted for simplicity. The run-length encoding feature can be user-disabled

for performance impact evaluations.

In order to avoid significant errors due to round-off during compositing, this

implementation of run-length encoding uses a floating-point representation of color

values. In this way, any round-off errors are so small as to disappear when the floating-

point color values are converted to 24-bit form. However, this accuracy comes at the cost

of increased computation time and larger sample record size.

Color Transfer Function. The color transfer function maps a voxel's data value

to a color and opacity. For the color, the prototype uses a rainbow scale, ranging from

red to violet. To implement the color scale, a Hue Saturation Value (HSV) color scale is

used. The data value is mapped to a Hue angle from 0 to 350, while saturation and value

are kept at unity. Finally, the HSV color specification is converted to RGB space.

Opacity also varies linearly with the data values between user-specified extrema.

This implementation can be readily extended to the display of multi-variate data.

The now-unused portions of the color space (i.e. those colors where saturation and value

are less than unity) could be used to map additional variables.

User Interface. The user interface for the Interactive Volume Renderer was

implemented using the Forms Library, a public domain graphical user interface library

for Silicon Graphics workstations. The goal of the user interface was to give the user

significant real-time control of the rendering process so as to facilitate data exploration.

20

The user interface consists of three parts: a main interface window, a legend window,

and a color specification window.

Main Interface Window. The main user interface window is shown in

Figure 10.

Figure 10. IVR Main User Interface Window

The main window has four functional areas. Similar controls are grouped

together in their own functional areas. The functional areas are clearly delineated by

21

bounding boxes of different colors. The four functional areas are the Viewing Geometry

area, the Acceptable Error area, the Physical Screen area, and the Command area.

The Viewing Geometry area includes sliders for controlling the rotation,

translation, and scaling of the data volume. The area also includes sliders to control the

eye-point and the projection screen location - there are sliders for the distance of the eye

point from the center of the volume, the distance of the projection screen from the eye

point, and the width of the projection screen. This functional area is the user's primary

tool for navigating through the data volume, and so is placed at the top of the window.

The Acceptable Error area allows the user to specify the acceptable error to be

used on the first refinement phase, the divisor to be applied to the acceptable error after

each phase, and the value below which the acceptable error is to be forced to zero.

Numeric input fields are used rather than sliders so as to allow the user full experimental

latitude with respect to the numbers used.

In the Physical Screen area, the rendering window height and width can be

specified, in pixels. The background color can be specified as an RGB triple.

The Command area at the bottom of the window consists exclusively of buttons

which either toggle features or perform one-time actions. Run-length encoding

compression is enabled or disabled using a toggle button - the button is neutral gray if

compression is on, and bright yellow if it is off. Another toggle button controls whether

or not the renderer pauses after each progressive refinement. The one-time command

buttons allow the user to load a file, save the screen image, summon the color

specification window, reset all parameters to default values, pause/continue rendering or

exit the renderer. Ample room was left for additional command buttons or functional

areas.

Legend Window. The color scale being used for rendering is presented to

the user in a window adjacent to the rendering window (Figure 11). This allows the user

22

to see how the colors map to the data values. Note that the color ribbon consists of two

halves. The left half shows the color uncorrected for opacity. This is what an infinitely

thick volume of that data value would look like. The right side shows the color

multiplied by its opacity. This shows what a single voxel with that data value would look

like. These two views help the user understand the effect of opacity on color.

The legend window can also accommodate additional user cues, such as a data

volume orientation icon, when these cues are implemented.

Figure 11. Legend Window.

23

Color Specification Window. The color specification window

(Figure 12) allows the user to specify the operating parameters of the color transfer

function. The inclusion of this feature was prompted by Rheingan's experimental

evidence that user confidence in the interpretation of color gamuts is highest when the

user can interactively control them [Rhei92].

Figure 12. Color Specification Window.

The color specification window allows the user to specify the minimum and

maximum data value range to be mapped by the color transfer function. Immediately

below these input fields, the 'Descending Scale' toggle button controls whether the high

end of the data values is mapped to the low or the high end of the hue scale. The 'Render

voxels < min' and 'Render voxels > max' toggle buttons control whether or not data

values outside the specified data value range are rendered. Two sliders control the

24

minimum and maximum opacity values, while a toggle button allows the user to map the

high opacity to either the low or the high data value.

As the user changes the color transfer function parameters, the color scale

indicator in the right-hand portion of the window changes in real time. This gives the

user instant feedback as to how the specified color transfer function appears. The color

transfer function is not applied to the octree until the user presses the 'Apply' button.

When the 'Apply' button is pressed, the Legend window is updated with the new color

parameters, the octree is re-built, and the progressive refinement rendering process is re-

started. Alternatively, the user can choose to return to the previously used color

parameters by pressing the 'Revert' button, or reset the color parameters to their default

values by pressing the 'Reset' button.

The 'Hide' button dismisses the color specification window. This feature allows

the user to reduce on-screen crowding.

VOXELIZE

VOXELIZE is a pre-processor for the Interactive Volume Renderer. It is

implemented in ANSI C and uses no machine- or architecture-specific features.

VOXELUZE reads RCS data files created by the Radar Cross Section - Basic Scattering

Code (RCS-BSC) and generates IVR-format cuberille data files.

Input File. The RCS-BSC file is organized by azimuth and elevation

angle. It has a record for every combination of elevation angle between 0 to 180 degrees

step 0.5 degrees, and azimuth angle between 0 and 180 degrees, step 0.5sin(elevation).

Each record consists of the RCS (in centibels over square meter) and phase angle of the

return for each of four transmitter/receiver antenna polarization combinations:

Horizontal/Vertical, Vertical/Horizontal, Vertical/Vertical, and Horizontal/Horizontal.

25

Wojszynski discusses the parameters used to generate the RCS data set, as well as a

detailed discussion of the RCS-BSC file format [Wojs92].

General Approach. VOXELIZE takes the following approach to represent

RCS data in a cuberille format. An emitter with the characteristics described in the RSC-

BSC file is assumed to be at the center of the volume. This emitter can be visualized as

emitting one data ray for each entry in the RCS-BSC file. This data ray has associated

with it one attribute: the RCS in the ray's direction for the user-specified antenna

polarization combination.

For each voxel in the volume, the data rays which intersect the voxel are

averaged. The average is weighted by how long the ray's path inside the voxel is (i.e. a

glancing ray weighs less than a ray through the center). The voxel is assigned a data

value which is a function of that average. Unless otherwise specified by the user, that

function is the identity function.

VOXELIZE's operating parameters can be specified through an extensive set of

command-line options.

Filtering. VOXELIZE can be set to disregard data rays which are either

below a specified RCS or above a specified RCS, or both. This feature was adopted from

the pre-processor used by Tisdale in his RCS volume rendering work [Tisd92].

Spherical Masking. The user can request the blanking of all voxels

which are exterior to the largest sphere which can be inscribed in the data volume.

Blanked voxels are set to a null value and ignored by the volume renderer. This spherical

masking option produces a data volume which appears spherical rather than cubical.

However, this option guarantees that at least 47.6% of the voxels in the data volume will

be blanked, leading to significant storage inefficiencies. This 47.6% minimum blanking

factor is computed by subtracting the volume of the inscribed sphere from the volume of

a cube.

26

Proportional Masking. The user can request the blanking of all voxels

whose value divided by their distance from the volume's center are below a specified

ratio. Using this feature, regions of large RCS will form longer 'rays' from the center of

the volume than do the regions of smaller RCS.

Contour Coloring. The user can specify that the value of a non-blank

voxel be strictly proportional to its distance from the center of the volume. Used in

conjunction with the proportional shaping feature, this can produce an appearance much

like a color-coded contour map.

Data Volume Size. The user can specify the dimensions of the data

volume, in voxels. For simplicity of implementation, VOXELIZE only generates cubic

data volumes - the dimensions of every side will be identical. The voxels will be

considered to be unit cubes.

27

IV. Results

Introduction

The goals of this research was to implement an interactive volume renderer based

on the Sample Buffer algorithm [Ke93], and apply it to the visualization of RCS data.

These goal were accomplished. This section describes the observed behavior of the

progressive refinement algorithm, the visualization techniques which were found to be

most effective, and the performance of the system.

Progressive Refinement Algorithm Behavior

Figures 13 through 18 show the progressive refinement of an image. The subject

is a head-on view of vertical/vertical RCS data, voxelized in the VOXELIZE default mode.

In this default mode, detailed in Chapter 3, the value of a voxel is simply the weighted

average of all RCS data rays which intersect it.

The sequence of figures shows how the resolution of the scenes rendered

progresses from an extremely low first phase to a fully-detailed final phase as the error

criterion is gradually tightened. Figure 13 shows the result of the first refinement phase.

At this point, the acceptable error is 100. The root node of the octree has an error of

88.15, so no sub-division takes place. Therefore, all of the sample buffers remain as they

were initialized, either null or pointing to the root node of the octant. The result is a

rendering of the root node of the octree - a large cube whose color is the average color

of the data volume.

28

IJ

Figure 14 shows the second refinement. The acceptable error is now 50, and

some sample record sub-division has begun to take place. The areas of large data value

deviation are already becoming apparent because of the higher degree of sub-division in

those areas. The areas of the image which will be sparse are also becoming apparent.

Figure 15 is the third refinement. Acceptable error is 25. There are very few

large cubes left, and a good working approximation of the final image is already

displayed.

Figure 16 is the fourth refinement. Acceptable error is 12.5. The difference

between this image and the previous is not as dramatic as the previous changes. The

algorithm is now just filling in small details. This trend continues through Figure 17,

the fifth refinement, with an acceptable error of 6.25.

Figure 18 is the final image, rendered at an acceptable error of zero. The aliasing

artifacts of the VOXELIZE program stand out clearly in this figure.

Effective Visualization Techniques

The Interactive Volume Renderer, in conjunction with its VOXELIZE pre-

processor, presents a wide variety of options for visualizing RCS data. However, some

experimentation with these options was required to achieve informative visualizations.

The ability to interactively modify the color transfer function parameters proved very

useful during this trial and error process.

Figure 19 shows vertical/vertical RCS data, viewed head-on, voxelized using the

spherical masking, proportional shaping, and contour-coloring VOXELIZE features.

While some regions of low RCS can be made out, regions of particularly high RCS do

not stand out as well as they do in the default voxelization.

29

Figure 20, 21 and 22 show three views of the vertical/vertical RCS data, voxelized

using the proportional shaping and spherical masking options. This is the most effective

visualization developed for this system. Color cues help make regions of relative highs

and lows stand out. The overlapping opacities provide some limited depth cueing.

However, this visualization still suffers from inadequate depth-cueing.

Figures 23 through 26 are visualizations of different antenna polarity RCS data

using the same voxelizing and color scale as the previous figures. Figures 23 and 24

present head-on and side views of the horizontal/horizontal RCS data. Figures 25 and 26

show head-on and side-views of the horizontal/vertical RCS data.

Performance of the Interactive Volume Renderer

Table 1 below summarizes some performance metrics collected during the

generation of Figures 13 through 18. The image in question had a size of 256 by 256

pixels. Only 29.5% of the pixels were part of the data volume projection. The remaining

70.5% of the pixels were part of the background and demanded relatively little

computation. The data volume was a 65x65x65 grid.

30

Table 1. Progressive Refinement Performance Metrics

Phase Rendering Average sample Percent of exact Memory in use
Time (seconds) records per pixel sample records (Megabytes)

1 1.65 1 0.00% 19.3

2 5.56 6.29 0.00% 30.0

3 12.9 20.1 0.72% 46.6

4 31.8 36.7 10.17% 66.6

5 40.9 29.5 25.42% 52.1

6 26.4 1 100.00% 17.0

Note the effect of the run-length encoding compression on these metrics.

Memory use peaks in phase 4, then decreases as an increasing portion of the sample

records becomes type-exact. By the end of the final phase, all of the sample records are

type-exact, and every sample buffer consists of only one run-length encoded entry.

However, the peak amount of memory required to render a 256-by-256 pixel

image in this case is 66 megabytes. This exceeds the main memory available in all but

one of the workstations in the AFIT Graphics Laboratory. Performance plummets if the

Interactive Volume Renderer must resort to swapping-in virtual memory.

31

Figure 13. Vertical/Vertical RCS, Default Voxelization, Head-On View, Phase 1 of 6

Figure 14. Vertical/Vertical RCS, Default Voxelization, Head-On View, Phase 2 of 6

32

Figure 15. Vertical/Vertical RCS, Default Voxelization, Head-On View, Phase 3 of 6

Figure 16. Vertical/Vertical RCS, Default Voxelization, Head-On View, Phase 4 of 6

33

Ai

Figure 17. Vertical/Vertical RCS, Default Voxelization, Head-On View, Phase 5 of 6

Figure 18. Vertical/Vertical RCS, Default Voxelization, Head-On View, Phase 6 of 6

34

i

Figure 19. Vertical/Vertical RCS, Contour-Colored, Head-On View

Figure 20. Vertical/Vertical RCS, Proportional, Head-On View

35

Figure 21. Vertical/Vertical RCS, Proportional, Side View

Figure 22. Vertical/Vertical RCS, Proportional, God's-Eye View

36

Figure 23. Horizontal/Horizontal RCS, Proportional, Head-On View

Figure 24. Horizontal/Horizontal RCS, Proportional, Side View

37

Figure 25. Horizontal/Ve-*ica1 RCS, Proportional, Head-On View

Figure 26. Horizontal/Vertical RCS, Proportional, Side View

38

V. Conclusions

Assessment of Results

This research has successfully developed a fast volume renderer prototype for

RCS data. It uses the recent Sample Buffer algorithm [Ke93] to render initial coarse

images at near-interactive speeds. The renderer then progressively refines the image to

fine resolution in a time on the order of minutes.

However, the system demands huge amounts of memory resources in order to

draw relatively small images. It is effectively restricted to running on machines equipped

with 128 megabytes or more of main memory. However, optimization of the rendering

algorithm's data structures (e.g. by reducing the size of the sample record) could alleviate

this problem.

The system also suffers from an inadequate RCS data pre-processor. The

VOXELIZE pre-processor as now implemented cannot support the production of

visualizations on a par with previous AFIT RCS visualization research in particle systems

and surface rendering [Tisd92, Wojs92].

Future Work

This thesis suggests a large amount of promising additional research. The current

effort has done little more than implement a prototype. Some potential areas of follow-on

research are:

Sample Buffer Algorithm Optimization. The implementation of the algorithm

in this prototype is very inefficient in parts and would benefit greatly from optimization.

39

To name just one example, the run-length encoding compression routines repeat

expensive compositing operations that have just been completed by the rendering

routines.

Multi-Polar Visualizations. Adding the capability to visualize multi-polar RCS

data using a multi-variate color scheme. The HSV color scale used in the current color

transfer function has two unused dimensions that could be used to encode phase and

polarity data.

Improved RCS Voxelization Pre-Processor. As noted above, the current

voxelizer is deficient. Better paradigms for voxelizing RCS data must be developed.

More statistically sophisticated methods of sampling the RCS data may be appropriate.

The rendering-speed-versus-resolution trade-off also needs to be analyzed.

Distributed Implementation. Distributed or parallel rendering of the data has

the potential for yielding significant speed-up. Hardware aiready in-place at the AFIT

Graphics Laboratory could support this research.

Virtual Environment. A long-term research goal may be the development of an

immersive, interactive RCS visualization system, similar to the Virtual Wind Tunnel

developed by Bryson [Brys91]. In such a system, the visualization system could be

linked directly to the RCS data simulator The user could modify a simulated radar target

and view the changes to the RCS in real time.

General Purpose Rendering. The Interactive Volume Renderer is not restricted

to RCS data - it can serve as a general purpose volume renderer for any type of cuberille

data. As such, it is a candidate for further research in a wide variety of fields.

40

Appendix 1: IVR User's Manual

Introduction

IVR stands for Interactive Volume Renderer. It uses a progressive refinement

rendering algorithm, coupled with a graphic user interface, to provide fast and interactive

image generation.

The remainder of this document gives you detailed instructions on how to operate

IVR, but here's how it works in a nutshell: You can start IVR by simply invoking it from

the command line - no parameters are mandatory. Once IVR is started, three windows

will open. A blank rendering window, a legend window which will show you the current

color scale, and a control window, which is where you can change IVR's parameter.

Once you load a file by clicking the 'Load File' button in the control window, IVR starts

volume rendering it. You'll see the image being drawn into the rendering window,

progressively getting more and more detailed, until it's finally fully accurate. At any

time, you can change any parameters in the control window, and IVR will automatically

update the rendering window accordingly. When you're done, click the 'Exit' button.

That's all you need to know to get started in IVR.

Input File Format

IVR accepts cuberille data files. Its file syntax is as follows:

41i

"* Line 1 is a comment. The comment is echoed when IVR reads the file in, but

otherwise, it is completely ignored. The comment may be up to 254 characters

long and must be terminated with a newline character.

"* After the comment line, IVR expects nothing but numbers. The numbers must be

separated by whitespace - tabs, blanks or newline characters. The numbers it

expects are:

"* The size of the grid (in voxels) along the X dimension

"* The size of the grid (in voxels) along the Y dimension

"• The size of the grid (in voxels) along the Z dimension

"• A blanking flag. If you wish to flag a particular data value as meaning 'blank

voxel', then set this blanking flag to some non-zero integer, otherwise set it to

zero.

"• A blank value. If you have a non-zero blanking flag, then this entry specifies the

data value which will be considered 'blank.' If you set the blanking flag to zero,

some dummy number must be present, but its value is ignored.

"• The data values for the voxels. These must be specified in z-then-y-major order.

That is, they should be in the same order as they would be if output by a code

fragment such as:

for z
for y

for x
print value[x,yz]

Command Line Options

IVR has two command lines. To see them on-line, just type ivr -?

42

The two command line options are:

- i <number> This option specifies how verbose IVR will be with its status

messages.

0 - No status messages at all

1 - Minimal status messages

2 - Full status messages

3 - Instrumentation and debugging messages.

-v <voxei.jile> Specifies a voxel file to be opened immediately upon program

start.

Control Window

The control window is IVR's cockpit. From this window, you can control a wide

variety of simulation parameters, and immediately see what effect your changes had.

The first thing you'll notice is that the control window is split up into four color-

coded areas. The four areas are the Viewing Geometry area, the Acceptable Error area,

the Physical Screen area, and the Command area. We'll examine what each of these

control areas does.

Viewing Geometry Area. This is where you'll find the controls that affect your

viewpoint and perspective into the scene. The rotation sliders let you turn the scene

about the three axes. The translation sliders move the data volume back and forth along

the three axes. The scale sliders shrink or grow the data volume along the three axes.

You control your perspective with the eye-point distance and the projection

screen sliders. If you increase your eye-point distance, the data volume will appear

further away. Similarly, by making the projection screen wider, you can see more of the

43

scene, but things will look more smaller. If you increase the screen distance, it's like

zooming in with binoculars - things will start looking bigger.

Acceptable Error Area. The Acceptable Error area allows you to control how

IVR progressively renders the scene. For technical information on how progressive

refinement works, please refer to chapter 3 of this thesis. The initial acceptable error is

used on the first refinement pass. After each pass, the acceptable error is divided by the

divisor. When the acceptable error drops below a certain value, it is forced to zero, and

the scene is drawn at full resolution. The numeric input fields in the Acceptable Error

area allow you to control all of these parameters.

Physical Screen Area. In the Physical Screen area you can change the

parameters that control the appearance of the rendering window. The rendering

window's height and width in pixels can be specified by two numeric input fields. Below

that, you can specify the color of the rendering window's background. You do this by

specifying a number between 0 and 255 for the background color's red, blue, and green

components.

Command Area. The Command area at the bottom of the window allows you to

enter IVR commands or toggle in and out of modes.

The Compression button controls whether or not run-length encoding is enabled

(reference chapter 3). For best results, leave compression on all the time - it saves both

memory and CPU time. Note that the Compression button has a bright yellow spot on it

if compression is on, and that the spot turns neutral gray if compression is off. All toggle

buttons in this area behave the same way.

The Pause after each refinement button controls whether or not IVR pauses after

each progressive refinement. This is a toggle button too.

44

The Save Picture button lets you save the rendering window to a Utah RLE

format graphics file. Just push the button when you want to save the rendering window's

contents, and IVR will prompt you for a destination file name.

The Load File button lets you load in a new cuberille data file. If a file is already

loaded, the new one will supersede it.

The Set Colors button brings up the Color Specification window, discussed in the

next section. The Color Specification window lets you change the way the scene is

colored.

The Reset button sets all the parameters back to the values the had when IVR

started up. This is handy if you have changed the parameters so much you can't find the

data volume anymore. Note that the Reset button does NOT reset the color parameters.

There's a different button in the color specification window to do that.

The Pause button works just like you'd expect. Hit it once, and the renderer

stops drawing. Hit it again, and the renderer continues. The renderer is paused when the

pause button shows a yellow light.

The Exit button terminates IVR, no questions asked.

Color Specification Window

The color specification window allows you to specify how the data values in the

voxel file are mapped to colors and opacities. This is a powerful tool for data

exploration. In this section, we'll show you how the various controls in the color

specification window work.

Apply Button. The first thing you should keep in my mind is that all none of the

changes you make in the color specification window go beyond the window until and

unless you hit the Apply button. The changes you make will be reflected instantly in the

45

color scale inside the color specification window, but nothing outside the window will

change until you hit the Apply button. The window was designed this way because

changes to the color scale can take up to a few minutes to implement.

Data Value Range. The data value range controls allows you to specify the

minimum and maximum data values to be mapped by the color transfer function.

The Descending Scale toggle button, when active, maps the lowest data value

onto the highest color value, and vice-versa.

The Render Voxels > max toggle button, when active, tells the renderer to draw

voxels even though they are over the maximum data value. Those voxels will be drawn

in the same color as the maximum data value.

The Render voxels < min button, when active, tells the renderer to draw voxels

even though they are below the minimum data value. Those voxels will be drawn in the

same color as the minimum data value.

Opacity. Two sliders control the minimum and maximum opacity values. Note

that the sliders enforce mutual consistency. The minimum slider can never be more than

the maximum slider, not even for a moment.

The Descending scaletoggle button , when enabled, causes the high data values to

be mapped to the high opacity values.

HSV Value. You can control the range of colors used in the color scale using the

HSV Value sliders.

Command Buttons. You choose to return to the previously used color

parameters by pressing the Revert button. Alternatively, you can return to the start-up

default color settings by pressing the Reset button.

The 'Hide' button closes the color specification window. Use this feature if you

want a less crowded screen. You can always bring the color specification window back,

color settings unchanged, by hitting the Set Color button in the Control window.

46

Appendix 2: VOXEUZE User's Manual

Introduction

VOXELIZE is a pre-processor for the Interactive Volume Renderer. It reads RCS

data files created by the Radar Cross Section - Basic Scattering Code (RCS-BSC) and

generates IVR-format cuberille data files. For a discussion of VOXELIZE's theory of

operation, please refer to chapter 3 of this thesis.

Command Line Options

VOXELIUE's operating parameters can be specified through an extensive set of

command-line options. The command line options are explained in Table 2 below.

Table 2. VOXELIZE Command Line Options

Option Explanation

-i <level> Information level. Controls the level of detail of status
messages.

0 - No status messages
1 - Minimal status messages
2 - Full status messages
3 - Debugging messages

-I <low-bound' Fi-teng. Disregards data rays which are either below a
-h <high-bound> specified RCS or above a specified RCS, or both.

47

-s Spherical Masking. Blanks all voxels which are exterior to the
largest sphere which can be inscribed in the data volume.
Blanked voxels are set to a null value and ignored by the volume
renderer. This spherical masking option produces a data volume
which appears spherical rather than cubical.

-p <low-bound> Proportional Masking. Blanks all voxels whose value divided
<high-bound> by its distance from the volume's center is below a specified

ratio. Using this feature, regions of large RCS will form longer
"rays' from the center of the volume than regions of smaller RCS.
Voxels at the low-bound can only be found at the very center of
the volume. Voxels at the high-bound may exist anywhere inside
the spherically-masked volume. Values in between the low- and
high-bounds have maximum altitudes computed linearly between
0 and 1/2 of the data volume's width.

-c Contour Coloring. Specifies that the value of a non-blank voxel
is strictly proportional to its distance from the center of the
volume. Used in conjunction with the proportional shaping
feature, this can produce an appearance much like a color-coded
contour map.

-r <filename> RCS-BSC Input File Name. Default is stdin

-b <blank-value> Blank Voxel Value. The special data value to be used as a flag
for a blank voxel. Default is 0.0. Value may not have more than
3 significant figures.

-v <filename> Output File. Specifies the output voxel file. Default is stdout.

-s <Size> Size of Data Volume. Specifies the number of voxels on a side
of the output data volume. VOXELIZE only produces cubic
volumes. Minimum is 2, maximum is 1024, default is 65.

-t <Type> Type of Data. Specifies the type of RCS or phase data to be
used to build the output file. Options are:

0 - Vert/vert RCS [default]
1 - Vert/vert phase angle
2 - Horizthoriz RCS
3 - Horiz/horiz phase angle
4 - Horiz/vert RCS
5 - Horizivert phase angle
6 - Vert/horiz RCS
7 - Vert/horiz phase angle

48

Bibliography

[Brid88] Bridges, David J. Volume Rendering Techniques for the Display of Three-
Dimensional Aerodynamic Flow Field Datas. MS thesis,
AFIT/GCS/ENG/88D-2. School of Engineering, Air Force Institute of
Technology (AU), Wright Patterson Air Force Base, OH, December 1988.

[Brys9l] Bryson, Steve, and Creon Levitt. "The Virtual Wind Tunnel: An
Environment for the Exploration of Three-Dimensional Unsteady Flows,"
Proceedings of the 1991 IEEE Visualization Conference. 17-24. Los
Alamitos, California: IEEE Press, 1991.

[Dreb88] Drebin, Robert A., Loren Carpenter, and Pat Hanrahan. "Volume
Rendering," Computer Graphics, 22:4 65-74 (August 1988).

[Elvi9l] Elvins, T. Todd, and David R. Nadeau. "NetV: An experimental
Network-based Volume Visualization System," Proceedings of the 1991
IEEE Visualization Conference. 239-245. Los Alamitos, California:
IEEE Press, 1991.

[Elvi92] Elvins, T. Todd. "Volume Rendering on a Distributed Memory Parallel
Computer," Proceedings of the 1992 IEEE Visualization Conference. 93-
98. Los Alamitos, California: IEEE Press, 1992.

[Fole90] Foley, Thomas A., and David A. Lane. "Visualization of Irregular
Multivariate Data," Proceedings of the 1990 IEEE Visualization
Conference. 247-254. Los Alamitos, California: IEEE Press, 1990.

[Foul92] Foulke, Kenneth, and Thomas E. Reinkuser. "Aircraft Susceptibility:
Controlling Radar Signature," Aerospace America, 30: 44-46 (August
1992).

[Fuch92] Fuchs, Henry, Marc Levoy, and Stephen M. Pizer. "Interactive
Visualization of 3D Medical Data," in Visualization is Scientific
Computing. Ed. Gregory M. Nielson and Bruce Shriver. 140-146. Los
Alamitos, California: IEEE Press, 1990.

[Fuji86] Fujimoto, Akira, Takayuki Tanaka, and Kansei Iwata. "ARTS:
Accelerated Ray-Tracing System," IEEE Computer Graphics and
Applications, 16-26 (April 1986).

[Garg86] Gargantini, I., T.R.S. Walsh and O.L. Wu. "Displaying a voxel-based
object via linear octtrees," SPIE:626: 460-466 (1986).

[Glas84] Glassner, Andrew S. "Space Subdivision for Fast Ray Tracing," IEEE
Computer Graphics & Applications: 15-22 (October 1984).

49

[Hibb9O] Hibbard, Bill, and Dave Santek. "The VIS-5D System for Easy
Interactive Visualization," Proceedings of the 1990 IEEE Visualization
Conference. 28-35. Los Alamitos, California: IEEE Press, 1990.

[Kauf9l] Kaufman, Arie. "Introduction to Volume Visualization," in Volume
Visualization. Ed. Arie Kaufman. 1-18. Los Alamitos, California: IEEE
Computer Society Press, 1991.

[Kauf93] Kaufman, Arie. Volume Visualization Course Notes, presented at
SIGGRAPH '93, Anaheim, California. August 1993.

[Ke93] Ke, Hao-Ren, and Ruei-Chuan Chang. Sample Buffer: A Progressive
Refinement Ray-Casting Algorithm for Volume Rendering. Computers &
Graphics, 17: pp 227-283 (1993).

[Knot85] Knott, Eugene F., John F. Shaeffer, Michael T. Tuley. Radar Cross
Section: Its Prediction, Measurement and Reduction. Dedham,
Massachusetts: Artech House, 1985.

[Knot87] Knott, Eugene F. "EM Waves and the Reflectivity Process," in Principles
of Modern Radar. Jerry L Eaves and Edward K. Reedy, editors.
New York: Van Nostrand Reinhold Company, 1987.

[Laur9l] Laur, David, and Pat Hanrahan. "Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering," Computer Graphics: 25,
285-289 (July 1991).

[Levo90] Levoy, Marc. "Efficient Ray Tracing of Volume Data," ACM
Transactions on Graphics:9, 245-261 (July 1990).

[Rhei92] Rheingans, Penny. "Color, Change, and Control for Quantitative Data
Display," Proceedings of the 1992 IEEE Visualization Conference. 252-
259. Los Alamitos, California: IEEE Press, 1992.

[Same9l1 Samet, Hanan, and Robert E. Webber. "Hierarchical Data Structures and
Algorithms for Computer Graphics," IEEE Computer Graphics &
Applications. 48-68 (May 1988).

[Shu92] Shu, Reuben, Alan Liu. "A Fast Ray Casting Algorithm Using Adaptive
Isotriangular Subdivision," Proceedings of the 1991 IEEE Visualization
Conference. 232-238. Los Alamitos, California: IEEE Press, 1991.

[Styt9l] Stytz, Martin R., Gideon Frieder and Ophir Frieder. "Three-Dimensional
Medical Imaging: Algorithms and Computer Systems," ACM Computing
Surveys, 23(4): 422-499 (December 1991).

[Tisd92] Tisdale, David Jesse. Methods for Viewing Radar Cross Section Data in
Three Dimensions. MS thesis, AFIT/GCS/ENG/92D-18. School of
Engineering, Air Force Institute of Technology (AU), Wright Patterson
Air Force Base, OH, December 1992.

50

[Wi192] Williams, Peter L. "Interactive Splatting of Nonrectilinear Volumes,"
Proceedings of the 1992 IEEE Visualization Conference. 37-44. Los
Alamitos, California: IEEE Press, 1992.

[Wojs92] Wojszynski, Thomas George. Scientific Visualization of Volumetric
Radar Cross Section Data. MS thesis, A'rýITIGCS/ENG/92D-21. School
of Engineering, Air Force Institute of Technology (AU), Wright Patterson
Air Force Base, OH, December 1992.

[Yage93] Yagel, Roni. Volume Visualization Course Notes, presented at
SIGGRAPH '93, Anaheim, California. August 1993.

51

Vita

Captain Alain L. M. Jones was born on January 13, 1966 in La-Chapelle-Saint-Mesmin,

France. He graduated from Hendrick Hudson High School in Montrose, New York in

1983 and accepted an appointment to the United States Air Force Academy. He

graduated in 1987 and received a Bachelor of Science in Computer Science. His first

assignment was to the 82nd Student Squadron at Williams Air Force Base, Arizona. In

1988, Captain Jones was assigned to the 1002d Space Systems Squadron at Falcon Air

Force Base, Colorado, where he served first as a Database Administrator and then as

Squadron Executive Officer. In 1991, he transferred to the 2nd Space Wing at Falcon Air

Force Base, where he worked as a Logistics Plans and Programs Officer for the Global

Positioning System Control Segment. In May of 1992, Captain Jones entered the School

of Engineering, Air Force Institute of Technology, to pursue a Master of Science Degree

in Computer Engineering.

Permanent Address: 5301 Witham Court

Tampa, Florida 33647

52

December 1993 Master's Thesis

RADAR CROSS SECTION VISUALIZATION USING SAMPLE BUFFER
PROGRESSIVE REFINEMENT VOLUME RENDERING

Alain L. M. Jones, Capt, USAF

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCS/ENG/93D-13

ESC/YVM
Hanscom AFB, MA 01731

Approved for public release; distribution unlimited

This study developed a prototype for an interactive radar cross section visualization software system. The system,
hosted on a Silicon Graphics workstation, is intended to support aircrews, mission planners, aircraft designers,
and others who require an understanding of aircraft radar cross section characteristics. The input to the system
is a set of radar cross section samples taken at various aspect angles. A pre-processor developed as part of this
study transforms the input radar cross section data into a three-dimensional cuberille data volume. This data
volume is then visualized using an interactive volume renderer. The interactive volume renderer implements
progressive image refinement using the Ke & Chang Sample Buffer algorithm. A graphic user interface allows
users to modify rendering parameters and see the results of their changes in near-real-time.

Volume Rendering, Scientific Visualization, Radar Cross Sections, 66. . .
Stealth Technology, Computer Graphics

UNCLAS D A 1(N UN I CL IFIE N INLSIFI A� UL-4

UNCLASSIFIED UNCLASSIFIED ___~ UNCLASSIFIED UL

